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The lifetimes of tryptophan radicals in biological systems span
a wide range:1-7 in short peptide chains, they live only∼400 ns,4

but in DNA photolyase (∼10 ms)3 and a ribonucleotide reductase
(RNR) mutant (49 s),5 they persist much longer, thereby facilitating
spectroscopic characterization. Here we report both the EPR and
optical spectra of an exceptionally long-lived tryptophan radical in
a structurally characterizedPseudomonas aeruginosaazurin (Az),7

[Re(I)(CO)3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/
Y108W)AzM(II) [M ) Cu, Zn]. In this protein, the single
tryptophan (W108) is in an unusual environment (Figure 1);8 part
of the indole ring is exposed to solvent, but much of the residue is
encapsulated by the surface loop comprising residues 101 to 107.
Significant conformational variability in the crystal structure for
this entire region indicates heightened mobility of W108, the
surrounding polypeptide, and the solvent. W108 interacts with the
peptide backbone and K101 or E106, depending on the loop
conformation; notably, the 330 nm fluorescence maximum also
indicates a polar environment9 (Supporting Information).

EPR signals attributable to uncoupled tryptophan radicals in RNR
mutants have been reported.10,11In certain other proteins, however,
electronic coupling of the radical with paramagnetic centers or the
presence of other radicals obscures the signals.12-14 The EPR
spectrum of the W108 radical in frozen solution (generated by an
irreversible flash/quench method under anaerobic conditions)6 is
shown in Figure 2; the spectrum is independent of the metal center
(Cu(II) or Zn(II)), indicating that the electronic coupling between
the radical and Cu(II) is negligibly small (Cu-Cγ(W108) distance
is 16.7 Å). The 285 GHz EPR spectrum (Figure 2, lower left inset)
yielded accurateg values (gx ) 2.00355;gy ) 2.00271; andgz )
2.00221) that agree with those reported for other tryptophan radicals
analyzed by high-frequency EPR.10 Density functional calculations
on characterized protein radicals as well as model systems support
the assignment of W108 as a neutral species;15 moreover, the value
of gx indicates that the indole nitrogen is near an H-donor. At neutral
pH, the EPR signal16 can be detected for over 5 h at room
temperature (Figure 2, upper right inset); indeed, in regard to kinetic
stability, the W108 radical in Re(I)AzM(II) is rivaled only by the
tyrosine radicals in photosystem II (TyrD)17 and RNR.18

The absorption spectrum obtained 20µs after 355 nm laser
excitation of Re(I)AzZn(II) is shown in Figure 3. The spectrum
changes only very slightly over the pH range 4.0-9.8; it also is
very nearly the same in deuterated buffer (see Supporting Informa-
tion). The absorption maxima (512, 536 nm) fall between reported
values for protonated and deprotonated tryptophan radicals,19 which
seems reasonable for electronic excitation of W• in a polar (H- donor) environment. More cannot be said, as the positions of these

radical transitions depend strongly on the nature of outer-sphere
interactions.7 Single-wavelength monitoring20 of Re(I)Az(W108•)-
Zn(II) at pH 7.2 confirmed that there was no transient absorption
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Figure 1. Two different W108 environments in the crystal structure of
Re(I)AzCu(II): pdb code 1R1C. The four independent azurin molecules
contained in the asymmetric unit show two dominant conformations (left
and right) for W108 (Fobs-Fcalcd 1.9 Å resolution omit-electron density in
green). Rearrangement of the polypeptide in the surrounding loop (101-
107) accompanies the change in W108 conformation. In the two molecules
not shown, W108 has mainly the left conformation, but in each case, the
W108 indole ring has less definition in the electron density than depicted
above.

Figure 2. X-band EPR spectrum of ReAz(W108•)Zn(II) under anaerobic
conditions (77 K, pH 7.2 KPi, ν ) 9.4753 GHz, modulation amplitude)
0.2 mT, microwave power≈ 200 µW). Lower left inset: 285 GHz EPR
spectrum under nonsaturating conditions (50 K, modulation amplitude)
0.1 mT); for a description of the high-field spectrometer, see: Un, S; Dorlet,
P.; Rutherford, A. W.Appl. Mag. Res. 2001, 21, 341-361. Upper right
inset: room-temperature decay of the EPR signal (monitored atg ) 2.011,
ν ) 9.7972 GHz).
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at 600 nm (a signal expected if a protonated species had
formed).3,19,21The rate constant for formation of Re(I)Az(W108•)-
Zn(II) is 2.8 × 106 s-1 (Figure 3, inset).

To estimate the Re(I)Az(W108•/W108)Zn(II) reduction potential,
we photolyzed a solution containing 0.24 mM ReAz/12 mM [Co-
(NH3)5Cl)]Cl2 and trapped the radical-containing product at 77 K.6

By spin integration, the concentration of W108• was found to be
∼60 µM. After warming of the sample to room temperature,
addition of 160µM K4[Mo(CN)8], and refreezing of the sample,
the only EPR signal aside from Cu(II) was from a Mo(V) species,
[Mo(CN)8]3-.22 Since the reduction potential of the [Mo(CN)8]3-/4-

couple is 0.78 V vs NHE,23 that of the W108 radical in ReAz (g0.8
V) is within the range (0.6-1.0 V vs NHE) estimated for the residue
exposed in solution.24-28 The time course of the EPR signal
amplitude (Figure 2, upper right inset) clearly indicates that multiple
pathways are associated with W108• decay. Work aimed at
elucidation of these pathways is underway.
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Figure 3. Absorption spectrum recorded 20µs after flash/quench of 63
µM Re(I)Az(W108)Zn(II)/5 mM [Co(NH3)5Cl]Cl2 in 50 mM KPi (pH 7.2)
at room temperature. Inset: single-wavelength monitoring of Re(I)Az-
(W108•)Zn(II) formation (500 nm). The trace was produced by photoex-
citation of a solution of 42µM Re(I)Az(W108)Zn(II) with 5 mM
[Co(NH3)5Cl]Cl2 in 50 mM KPi pH 7.2 at room temperature. The slight
bleach immediately after excitation is due to emission from the rhenium
complex.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 47, 2003 14221


